
42 Curriculum

Updated: 1st August 2022

The 42 student journey
Our students learn at their own pace with their peers, learning how to learn. This means
that our partners have access to talent and interns all year round.

Applications

Anytime

Potential students
complete on-line

game-based test and
introduction sessions

Fundamental
s

8 – 12 months

Selected students
complete first 16 units,

fundamentals of
software engineering

Specialisations

12 – 18 months

Returning students
complete specialisation
units in a part-time or
full-time capacity with
an optional internship

upon completion

Piscine
(“pool”)

4 weeks

28-day introduction to
coding and competitive

selection process

Internship

6 months

Paid internship on a
part or full-time basis

with sponsoring
companies

Not required for cadets

Curriculum overview

The 42 program is divided into 2 parts.

The first stage is known as the inner circle which focuses
on our students building a strong foundation in
programming, networking and systems. Once
completed the students do a 6 month internship with
our hiring partners (This does not apply to cadets as they
will be working on this as part of their cadetship).

The second stage is known as the outer circle and is
completed by students after their internship has been
completed (optional), often in a part-time capacity as
they have secured employment. This part of the
curriculum focuses on specialisations and is available to
42 students at any time.

Each circle shows a project within the 42 game based curriculum.
Green shows the inner circle
The outer circle shows the specialisations

Technical skills Critical skills gained
•Programming

○ Imperative
○ Functional
○ Object-oriented

•Algorithms
•Artificial intelligence
•Graphics
•Technology integration
•System administration
•Networking
•Security
•Data & databases
•Parallel computing

•Communication
•Collaboration
•Adaptation
•Problem solving
•Autonomy
•Personal organization
•Self-learning
•Innovation
•Resilience
•Critical thinking
•Analytical
•Learning

The curricula
While technical skills are the foundation of learning
at 42 it is the critical skills gained that sets our 42
graduates apart.

Inner circle

First 16 units
(part 1 of the curriculum)

Inner circle overview
Within the first part of the curriculum the students are trained in software engineering
and build a solid foundation.
Overview
Students are trained as software engineers with the right skills and mindset to be productive in the workplace from day 1. They quickly adapt to different
frameworks and are used to working according to strict standards in terms of quality and style. Students have experience with intensive collaboration and
communication in teams.

Form of education

• Practical work (16 projects)

• Exams (5)

• Internship (4-6 months)

Hours:

• Average 2720 hours (1920 practical work + 800 internship) – varies between students

Inner circle elements:

• C

• C++

• System administration, servers and networks

• Web development

Free choice in language and framework for +5 projects – including C, C++, JavaScript, PHP, and Java, with the option to use others like Ruby, Python, Kotlin and more.
They will also be required to develop Web-based Applications using HTML, CSS, JavaScript and PHP. Various implementations of Databases feature throughout the
program to ensure candidates are well acquainted with data and data linking.

n

Element 1 – Programming in C
Overview
Our Students write complex programs in C and create and implement standard functions.
As they progress through the projects they must then use them in subsequent projects,
developing an in-depth understanding of the programming language and the underlying
concepts. These include; data types, memory management, data structures (linked lists,
binary trees, abstract syntax tree, recursion, variadic arguments, lexer, parser, graphic
rendering (raycasting/raytracing), unix filesystem, multithreading (mutex/semaphore).

Student Technical Learning outcomes

• Convert a problem into a workable coding solution

• Write code in C that meets strict standards, style and structure requirements

• Write and implement standard library functions (string functions, printf)

• Write complex programs with minimal tools (graphics engine, shell)

• Write applications that use multithreading

• Implement standard library features in Assembly code

Projects Description Type

Libft Write a library consisting of 43 functions that can be used in all
subsequent projects. Features can be divided into three
categories:
1: libc features like memmove, strlcat, atoi, calloc and strdup.

2: additional features like substr, strjoin, itoa.
3: list features like lstnew, lstadd_back, lstmap (bonus).

Solo

Get_next_line Write a function that returns the next line of a file descriptor
when calling.

A static variable must be used to hold a buffer in it.

solo

Ft_printf Develop their own implementation of the standard printf
function. Contains the conversions: 'cspdiuxX%' and flags:
'-0.*'. Must work if the 'real' printf and variadic arguments use
it.

solo

Cub3d Develop a mini 3D game using ray casting. The goal is to create
a dynamic view in a maze, in which to move.

solo

miniRT Develop a basic raytracer. Can generate an image using the
raytracing protocol.

solo

Minishell Develop a shell-based bash-based implementation. Must
include: pipes, environment variables, signals, redirections,
quotes, multiple commands, CD, pwd, export, echo, unset,
env, exit.

group

Philosophers An introduction to multithreading and working with processes
that use the same memory at the same time.
Topics: threads, mutex, semaphore, processes

solo

libasm Develop a library in Assembly consisting of 11 functions. solo

Exams Description

Rank 02 Write a simplified implementation of get_next_line or printf

Rank 03 Develop a simple graphics rendering (mini_paint or micro_paint)

Rank 04 Develop a minishell: shell implementation with pipes and CD

Rank 06 Write a simple web server (mini_serv)

n

Element 2 – Programming in C++
Overview

Our students learn and become proficient in object oriented programming (OOP) and
develop in-depth understanding of different techniques and how to apply them in one of
the larger projects at the end of the first part of the curriculum.

Topics covered include: Encapsulation, Polymorphism, Inheritance, Classes, Abstract
classes, Templates, STL, List, Vector, Map, Stack, Queue.

Student Technical Learning outcomes

• Know how to develop object-oriented code (classes, methods, inheritance, and
interfaces)

• Have insight into designing programs aligning with good design structure

• Write complex programs in C++, utilising webservers, IRC client/server.

• Write their own implementations of standard C++ containers

• Coding with an object oriented web framework

Projects Description Type

CPP Module
01 t/m 08

Extended introduction to C++ and object oriented
programming (OOP). Topics covered are
Class, Inheritance, Abstract classes, Templates, STL

solo

Ft_containers Develop implementation of the standard C++ Containers
List, Vector, Map, Stack, and Queue.

solo

Ft_irc Write an Internet Relay Chat (IRC) server solo

Webserv
Develop an HTTP server in C++ according to the rfc
7230-7235 (http 1.1) standard.

Group

Exams Description

Rank 05 Write 10 classes that require all the gained knowledge about OOP in C++.

Element 3 – Systems, servers and networks
Overview

Our students learn the basics of networking and systems administration, which includes
topics such as IP addressing, netmasks, TCP, DHCP, DNS, routing and ports.

They will learn how to deploy a web server using ‘Docker’ technology running multiple
services including Wordpress, phpMyAdmin, and a SQL database and also how to set up
a multi service cluster of those services using Kubernetes for managing and deployment.

Student Technical Learning outcomes

• Understanding the basic concepts of System Administration

• Scripting to automate tasks

• Set up a complex cluster of containers using Kubernetes by virtualising a network

• Develop coding best practices to reduce security breaches

• Understanding ip address plans, subnet, routing

• Operating system installation and management, using Linux

• Local networks and host connections

• Set up and maintain network services (mail, web, dns, ...)

• Create and deploy simple containers and virtual machines

Project Description Type

NetPractice An introduction to networking through multiple choice
questions. Topics: IP, netmask, TCP, DHCP, DNS, routing, ports.

solo

Inception
Set up a web server using Docker. Topics: Nginx, MySql,
phpMyAdmin, WordPress, SSL

solo

Webserv Writing a HTTP server, test with browser, ports and hosts, execute
CGI. cookies, session management

solo

Element 4 – Web development

Project Description Type

Ft_transcendence Annual changing web development project*. The programming
languages and frameworks to be used can change each year. A
comprehensive online application must be written (both backend
and front-end).

Team

3-5

* 2020 Project: Develop an intranet for a school with a programming language and framework unknown to them. The
choice of programming language and framework is up to the student provided they are applications that he or she has
not previously worked with. See the full project description for illustration here.

Overview

Our students learn to build an extensive online platform.
The covers include: HTML, CSS, BackboneJS, Rails , PostgreSQL.

Student Technical Learning outcomes

• Develop usable fullstack website

• Use javascript libraries and frameworks

• Develop single page applications (login, Chat, Game, Groups, administration panel)

• Use of relational PostgreSQL database

• Creating full featured web-site using a classic framework (Django, Rails, Symfony)

• Approach of UX/UI/Design

• Authentication, session handling and backend configuration

Student organisational learning outcomes
• Independently collect, analyse, assess and use information

Combine information from different (types of) sources

Dealing with and filtering large amounts of information

• Robust error and input handling

Learning from mistakes and continuously improving solution

Be accurate in evaluating one's own work and the work of

others

Taking responsibility for the process (time management) and

results

Ask others for help and offer help

Collaborate with people from different backgrounds and levels

Solve complex problems in a group and work them out in code

• Give and receive feedback through code reviews

• Business analysis

• Leadership

• Learn how to problem solve independently as well as in teams, to
come up with effective and robust solutions

• Solve complex programming issues in new and unknown
environments

• Apply different programming languages and frameworks to
develop and implement software solutions across a variety of
domains

• Have the ability to communicate, receive and provide feedback
about their own code and explain its operation to others with
various programming knowledge

• Have the ability to make mistakes and demonstrably learn from
them to ultimately implement the most optimal solution

• Contribute to large software development processes by working
in teams, breaking the issue into sub-problems, writing clear and
well documented code, and reviewing each other's work

Internship and career pathways
After the inner circle (first 16 units) the students complete a 6 month internship with
companies. (Excluding cadets) Front End Developer

Cloud computing

Back end
developer

Threat hunter/
cybersecurity

Java / Python /
PHP Developer

Data Analysts

Mobile / Game
Developer

Outer circle

Specialisations

Map of
specialisations

Specialisation

Gaming and Creative

Creative – gaming and film pathways
Year 1 project examples

The first year students at 42 learn the foundations of
coding and can start their journey towards a careers in film
/ gaming, including introductions to 3D graphics, ray
casting and ray tracing
cub3d
This project is inspired by the world-famous
eponymous 90's game. It will enable students to
explore ray-casting. The goal will be to make a
dynamic view inside a maze, in there they’ll have
to find The way Create the first RayCaster with
miniLibX
Rigor, use of C, use of basic algorithms. As a
graphic design project, cub3D will enables
improved skills in these areas: windows, colours,
events, fill shapes, etc
CODE: C PROJECT: Individual

MiniRT
This project is an introduction to the
beautiful world of Raytracing. Once
completed students will be able to render
simple Computer-Generated-Images
and they will never be afraid of
implementing mathematical formulas
again.
CODE: C PROJECT: Group or Individual

FT Transcendence
Build a website for the mighty pong contest. the
website will help user run pong tournament and
play against each other. There will be an admin
view, chat with moderators, real time multiplayer
online games.
CODE: Rails PROJECT: Group

Creative – Gaming and graphics pathways
Year 2 (Outer Circle) project examples

Abstract VM
The creation of a virtual machine
capable of executing a code in basic
pseudo-ASM. Students will thus use
a stack for basic arithmetic
operations, such as the dc
command.
CODE: C++ PROJECT: Individual

Nibbler
This project in C++ will make students
recode a Snake where students can
switch the interfaces at run time.
CODE: C++ PROJECT: Group or
Individual

C++
Virtual Machine
Open GL
Games

Bomberman
Here students will take advantage of its
simplicity to make students first big C ++ project
with a professional look. students will recode a
version of Bomberman, in C ++ and with OpenGL,
with the aim of making the game as successful
as possible.
CODE: C++ PROJECT: Group

scop
students will become acquainted with
the main concepts of 3D. Create a
small program that will show a 3D
object conceived with a modelling
program like Blender. The 3D object is
stored in a .obj file. students will write
a parser to obtain the requested
rendering.
CODE: Open PROJECT:: Individual

HumanGL
This intermediate open GL project
is an introduction to hierarchy
modelling. students will learn to
use matrices in order to link
various parts of a humanoid
model, and animate them.
CODE: Open PROJECT: Group

3D
Rendering
Open GL

Ft-vox
Introduction to the voxel engine,
inspired by minecraft, in which
students must create a randomly
generated world.
CODE: Open PROJECT: Group

Shaderpixel
Display 3D fractals, procedural
worlds, clouds all within an
exhibition window created to
showcase students creations. CGI
through the use of shaders, and
more precisely OpenGL fragment
shaders. students will also have to
learn how to optimize students
displays and light effects
CODE: Open PROJECT: Group

Particle-system
In this project, students will
implement a particle system using
the OpenCL API and its kernel
programming language OpenCL C
to give life to students particle
system. students will also render
them using OpenGL.
CODE: Open PROJECT: Individual

42 run
Students goal is to create a small
program that will present an
endless run (within the school
walls) in 3D, while using the codes
of temple run/temple run 2
gameplay. Need to show elements
including a set that shows
movement, obstacles, a set with
cool perspective.
CODE: Open PROJECT: Individual

Creative – Gaming and graphics pathways
cont.
Year 2 (Outer Circle) project examples

2 week - BOOTCAMP “Piscine” Unity
This set of projects starts with a bootcamp as a way of an introduction to Unity. This is an
intensive 2 weeks of peer based learning split in many small projects completed each day,
and with each day a new notion on the language/paradigm/technology students chose to
work on is introduced.

Projects include:
Day 1 - Assets, GameObject, Behaviour,
 Input, Transform
Day 4 - Advanced inputs and 2D GUI
Day 7 - Staging, shaders, lights, 3D sound
Day 10 – Putting it all together

Unity
Games
3D

In-the-shadows
In this project, students will code a
whole game using Unity, students
will develop a game close to
Shadowmatic.
CODE: Open PROJECT: Group

XV
Build an application with Unity
allowing its users to create and
animate a virtual industrial
environment.
CODE: Open PROJECT: Group

CODE: Open PROJECT:: Individual and Group
released daily `

Day 2 - 2D physics, Tags, Layers and
Scenes
Day 5 - PlayerPrefs and Coroutines
Day 8 - Navmesh, 3D Physics, 3D GUI
Group Project 1

Day 3 - Audio, Animation and communication between
scripts
Day 6 - Terrain, camera management, 3D Physics Terrain
Day 9 - Animations
Group Project 2

Student examples - creative
A student profile who has taken the creative pathway

Linked in profile -
https://www.linkedin.com/in
/hadrien-estela-a5427a95/

https://www.linkedin.com/in/hadrien-estela-a5427a95/
https://www.linkedin.com/in/hadrien-estela-a5427a95/

Web & Mobile App
Development

Specialisation

Web Development Pathways
Before students complete more advanced projects they participate in one or more 2 week intensive
bootcamps focusing on a specific language to learn key components of web development.

This set of projects starts with a bootcamp as a way
of an introduction to Web Development using the
chosen language as the foundation. This is intensive
peer based learning split into many small projects
completed each day, and a new notion on the
language or paradigm introduced each

Bootcamp 1
Python

Bootcamp 2
Ruby on Rails

Bootcamp 3
Symfomy (PHP)

• Syntactics and semantics
• Media and interface design
• Inheritance and exceptions
• Sites (static and dynamic)

Matcha
Students create a dating web app with
the following features; registration &
sign in, user profile, browsing, research,
chat, notifications, integration
Facebook, Google etc.
PROJECT: Group

FIXME
Discover computer security in relation to the web
through dissecting a vulnerable website,
become aware about security in a web
application and problems associated with
simple development errors, both from a
programming and design perspective
PROJECT: Individual or Group

Advanced
Projects

Language / code is
free choice based
on above
bootcamp selected,
unless indicated

Hypertube
Discover MVC frameworks. The
student will learn how to build an
MVC application, in the language
of their choice, to create a video
streaming site downloaded via
the BitTorrent protocols.
PROJECT: Group

• HTTP, HTML, CSS and JS integration
• Libraries
• Authentication and user management
• Contextualisation
• Servers and production

Music room
A complete mobile solution focused on
music and user experience, created in
collaboration with Deezer. The student
creates a complete mobile app of a
collaborative playlist using the SDK and
API of Deezer. On the menu, mobile
native development, back-end
development and creation of API REST.
PROJECT: Group

Camagru
Using PHP the student will build a small
Instagram-like website allowing users to create
and share a photomontage. The application will
be built from scratch, delivering basic
functionalities of user driven websites.
PROJECT: Individual

Red Tetris
The student will create an advanced
asynchronous network protocol to
develop a networked multi player
Tetris style game. Using functional
programming, algorithmic animation
will be graphically displayed in HTML.
CODE: JavaScript PROJECT: Group

Year 2 (Outer Circle) project examples

2 week – iOS Swift App Development Bootcamp (Piscine)
This set of projects starts with a bootcamp as a way of an introduction to Advanced App
Development using iOS as the foundation. This is an intensive 2 weeks of peer based
learning split in many small projects completed each day, and with each day a new notion
on the language/paradigm/technology the student choses to work on is introduced.
Projects include:

App
Development
Swift
Java / iOS

Swifty Companion
The student will build an iOS or Android
app that will retrieve the information of
42 students, using the 42 API. Students
will use Xcode and Android Studio IDE’s.
CODE: Swift/Kotlin/Java PROJECT:
Individual

Swifty Protein
This project will give the student the
opportunity to discover Scene Kit, an
Apple framework to create 3D scenes.
Students will make an application that
models ligands (molecules) in 3D. This
deepens knowledge of Swift
frameworks such as Touch ID, sharing
under iOS, gestures as well as
SearchBar, Touch ID and social Sharing
mobile API
CODE: Swift /XCODE PROJECT: Group

CODE: Swift /XCODE PROJECT:: Individual and
Group released daily `

Day 2 – Introduction to Swift, using classic
card games
Day 5 – Tweet, API, requests, research
Day 8 – Pods (reuse functionality)
Group Project 1

Day 3 – Tables and lists, navigation, basics
Day 6 – Tab, MapKit, Segment, ControlBar,
Geo-tracking, locations
Day 9 – Pods, data modelling, class
articles
Group Project 2

App Development Pathways

T- Hangouts
The student will create a contact
management mobile app on Google’s
Android platform. They will have to
understand how an Android app
functions, how Android manages their
application and how to use the SD.
CODE: Java PROJECT: Individual

Day 1 – Introduction to Xcode – develop calculator app
Day 4 – Photos, multithread, warnings, scroll view, zoom
Day 7 – TapGesture, dynamic behaviour, gestures,
CoreMotion
Day 10 – Putting it all together

Creative - UI Pathways
Year 2 Project Examples

Abstract VM
First project of the Java projects
arc. Implementation of a simple
Java program according to a
given class diagram written in
UML.
CODE: Java PROJECT: Individual

FIXME
Write a program that simulates stock
exchanges and deals with trading
algorithms, with networking and socket
implementations.
CODE: Java PROJECT: Individual

Java
OOP
Networking
UI
Swing

Swingy
Develop GUI applications with the
SWING framework, in order to create an
RPG game.
CODE: Java PROJECT: Individual

2D Programming
UI
MiniLibX

GUIMP
Create a graphic interface library. The student
will have to prove it works correctly with a small
2D image software. This library must as
complete and modular as possible, the goal
being to re-use it in future projects, whether for
projects in the graphic branch or other projects
of their training.
CODE: Open PROJECT: Individual or Group

Fract-ol
Discover 2D programming and the psychedelic
universe of fractals in this project, using MiniLibX.
CODE: C PROJECT: Individual

In year one and two we can also co-create specific projects / curricula for
students in collaboration with our partners and sponsors

Security & Encryption

Our students learn:

• Coding and defending against viruses
• Using and coding software that exploit a security

breach
• Network oriented attacks : man in the middle,

sniffing, IP & ARP spoofing,
• System and administration projects that need a

high level of security, with firewalling, backup, DMZ,
NAT.

• Explore the various cryptographic algorithms : DES,
RSA, AES, MD5, ... and create their own
implementation

Specialisation

Security Pathways
Year 2 (Outer Circle) project examples

ft_ssl_md5
An introduction to cryptographic
hashing algorithms, This project
is the gateway to the encryption
branch. The student will recode
part of the OpenSSL program,
specifically the MD5 and SHA-256
hashing algorithms.
PROJECT: Individual

ft_ssl [base64] [des]
The student will learn about symmetric
encoding and encryption. This project is
a continuation of the previous
encryption project. They will recode part
of the OpenSSL program, specifically
BASE64, DES-ECB and DES-CBC.
PROJECT: Individual

SSL ft_ssl [genrsa] [rsa] [rsautl]
This project is a continuation of the previous
encryption project. The student will recode part of
the OpenSSL program, specifically GENRSA, RSA,
and RSAUTL. By the end of this they should be
intimately familiar with the workings of
asymmetric key cryptosystems.
PROJECT: Individual

ft_ls
Learn the filesystem inside out,
and how files and directories are
sorted. In short this project will get
the student to recode the “ls”
command and learn how to
interact with the file system.
PROJECT:: Individual or Group (2)

ft_select
As a Unix learning project, the
student will code a small user
interface program using termcaps
which will allow them to pick from a
list of choices and return it to the
shell.
PROJECT: Individual

Unix
Terminal
File System
Memory

malloc
This project is about
implementing a dynamic memory
allocation mechanism, through
writing a dynamic allocation
memory management library.
PROJECT: Individual

Taskmaster
The goal of this project is to
make a Unix job control
daemon, with features similar
to supervisor. The students will
learn to manage Job control in
Unix using multiprocessing.
PROJECT: Group

matt-daemon
A Unix project to create a daemon of
type server. This server will listen on a
given port, store and interpret a list of
command messages.
PROJECT: Individual or Group (2)

durex
students goal in this project is to code a
simple trojan horse.
PROJECT: Individual or Group (2)

Job Control
Daemon
Server
Trojan

Year 2 (Outer Circle) project examples
Snow-crash
Introduction to computer security. The
student will learn to spot different
techniques used to exploit software
weaknesses. Using several languages
(ASM/perl/php), they will learn to
differentiate between unknown programs
and simple programming errors.
PROJECT: Individual or Group (2)

Boot 2 root
This project is an introduction to
penetrating a computer system
PROJECT: Group

Security
ISO

Override
Override follows on from the Rainfall
project, in which the student will have to
search for faults present in the protected
binaries, and re-build these binaries
depending on their behaviour.
PROJECT: Individual or Group

nm-otool
Go deep into the format of MacOS
executables and understand how the
kernel launches binaries by re-writing
the nm and otool commands. This is a
must for all those who want to work in
security. More generally, this project is
an opening on UNIX system culture.
PROJECT: Individual

woody-woodpacker
A logical follow-up project on
nm/tools that is designed to modify
the headers of a ELF64 file. The goal
here is to add a chunk of code and
hide a non-stripped part of a file.
PROJECT: Individual or Group (2)

Executables
Encryption
Recursion
Create Viruses

dr-quine
This algorithm project will get the
student acquainted with
auto-replication problems and
encounter the Kleene recursion
theorem.
CODE: Open PROJECT: Group

Famine
Introduction to the wonderful world of
viruses, trojans and other anti virous
software. The goal here is to put the
students’ skills handling binary files to
make their first virus.
PROJECT: Group

pestilence
Second virus project. The student will
reuse the Famine base to add a
hiding method for their code.
PROJECT: Group

death
This project will build on the student’s
Famine, Pestilence and War projects to
create a real “metamorphic” virus.
CODE: Open PROJECT: Individual

Security Pathways

Rainfall
This project aims to further the student’s
knowledge in the world of elf-like binary
exploitation in an i386 system. Reverse
engineering and reconstructing code to
understand and detect faults.
PROJECT: Group

war
This project will reuse the pestilence
project, the student will make the
binary modify its signature at
runtime. They will code a
"polymorphic" virus.
PROJECT: Group

System Administration
• Through complex system administration and

networking projects, face and solve cohabitation
problems between a large variety of usual software
and services

• Infrastructure and administration in the cloud
• Design, manage and maintain a complex network
• Able to put in place CI/CD to fulfil a Devops position
• Coding a device driver inside a Unix Kernel
• Create micro kernel with minimal
• Explore binary file format, replicating a classic unix

tool
• Re-coding the system standard memory allocator
• Mixing network programming, computer graphics and

AI, create a full online game using a client-server
architecture.

• Creating debugging tools in a Linux environment.

Specialisation

System Admin Pathway
Year 2 (Outer Circle) project examples

ft_ls
Learn the filesystem inside out,
and how files and directories are
sorted. In short this project will
get the student to recode the “ls”
command and learn how to
interact with the file system.
PROJECT: Individual or Group (2)

malloc
This project is about implementing a
dynamic memory allocation
mechanism, through writing a
dynamic allocation memory
management library.
PROJECT: Individual

UNIX
Terminal
File System
Memory

ft_select
As a Unix learning project, the student will code a
small user interface program using termcaps
which will allow them to pick from a list of choices
and return it to the shell.
PROJECT: Individual

ft_linux
The first project of the Kernel
branch! This is a simple LFS so
that the student can build their
own distribution which will be
used in the next projects.
PROJECT: Individual

little penguin
The start of a series of challenges
inspired by Eudyptula. The student
will get acquainted with many
points of Kernel development by
compiling a custom kernel, build
and using a kernel module and
learning how linux drivers work.
PROJECT: Individual

Kernel (path 1) userspace_digressions
The student will learn about the
init system, run levels, systemD
case through designing a boot
ready program, understanding
userspace by creating their own
userspace init binary.
PROJECT: Group

drivers-and-interrupts
Learn how to connect a driver to
students kernel using a keyboard
driver. The student will learn how
to work with interrupt requests,
understand interrupt key
functions and associate a
miscellaneous device with a
driver.
PROJECT: Individual

process-and-memory
An introduction to syscalls and
memory management within linux
kernel. The student will write a working
syscall and explore user and kernel
memory.
PROJECT: Individual

filesystem
The student will create their own filesystem
for their linux kernel, they will learn about
filesystems (superblocks, inodes, work with
rights, links and interact with other
filesystems.
PROJECT: Individual or Group (2)

System Admin Pathways
Year 2 (Outer Circle) project examples

ft_linux
The first project of the Kernel
branch! This is a simple LFS so that
the student can build their own
distribution which will be used in
the next projects.
PROJECT:: Individual

little penguin
The start of a series of challenges
inspired by Eudyptula. The student
will get acquainted with many
points of Kernel development by
compiling a custom kernel, build
and using a kernel module and
learning how linux drivers work.
PROJECT: Individual

Kernel (path 2) kfs-1
By the end of this project the student will
have a kernel they can boot, a basic
kernel library and a basic kernel.
PROJECT: Individual or Group (2)

drivers-and-interrupts
Learn how to connect a driver to
students kernel using a keyboard
driver. The student will learn how to
work with interrupt requests,
understand interrupt key functions
and associate a miscellaneous
device with a driver.
PROJECT: Individual

process-and-memory
An introduction to syscalls and
memory management within linux
kernel. The student will write a working
syscall and explore user and kernel
memory.
PROJECT: Individual

filesystem
The student will create their own filesystem
for their linux kernel, they will learn about
filesystems (superblocks, inodes, work with
rights, links and interact with other
filesystems.
PROJECT: Individual or Group (2)

ft_ls
Learn the filesystem inside out,
and how files and directories are
sorted. In short this project will
get the student to recode the “ls”
command and learn how to
interact with the file system.
PROJECT: Individual or Group (2)

malloc
This project is about implementing a
dynamic memory allocation
mechanism, through writing a
dynamic allocation memory
management library.
PROJECT: Individual

ft_select
As a Unix learning project, the student will
code a small user interface program using
termcaps which will allow them to pick from
a list of choices and return it to the shell.
PROJECT: Individual

Specialisation

• Solving realistic problems using genetic algorithms
• Using neural networks for machine learning projects
• Discover and use tools dedicated to machine

learning : python libraries, TensorFlow, ..
• Using classic game theory algorithms in small

games, like A*
• Design of a databases using UML
• Coding a data visualisation system
• Advanced database structures/systems: Nosql, lake.

Data Analysis,
Databases and AI

Data, AI and algorithms
Year 2 Project Examples

Cloud-1
This project is about cloud
discovery with auto-scaling,
load-balancing, and CDN. This
project is done in a simulated
work environment with a budget,
decision making and project
management requirements in
partnership with Amazon Web
Services

Datascience X Logistic Regression
Discover Data Science in the projects
where students re-constitute Poudlard’s
Sorting Hat, covering data analysis, data
visualisation and logistic regression.
The student will learn how to read a data
set, visualize it in different ways, to select
and clean unnecessary information from
students data. They will train a logistic
regression that will solve classification
problem

AI
Machine Learning
Neural Networks
Data Analytics

ft_linear_regression
This project will be the student’s first
steps into AI and Machine Learning.
They will start with a simple, basic
machine learning algorithm, creating a
program that predicts the price of a car
by using a linear function train with a
gradient descent algorithm.

multilayer-perceptron
This project is an introduction
to Machine learning through
artificial neural networks, with
the implementation of a
multilayer perceptron.

total-perspective-vortex
Use python tools to process large
dimension data, and create a
man-machine interface thanks to
brainwaves. This subject aims to
create a brain computer interface
based on electroencephalographic
data (EEG data) with the help of
machine learning algorithms.

These subjects should be completed in conjunction with the Python
bootcamp and web development core modules

Data, AI and algorithms
Year 2 Project Examples

computorv1
This project is about
Mathematics Basics and
Polynomial Equations. It aims to
make students code a simple
equation solving program. It will
take polynomial equations into
account. These equations will
only require exponents. No
complex function. The program
will have to display its solution(s).

Mod-1
Lean about Bezier surfaces,
advanced algorithms and fluid
mechanics. This simulation
graphic project will have students
represent a surface in 3D, on
which water will flow. Empirical or
scientific (with many equations),
recreate a wave, a tsunami or
maybe just rain on students
surface.

Math calculations
Sorting
Path selection
VM
Compilation
3D Rendering
Surfaces
Fluid Mechanics
Algorithms

computorv2
Dive deeper into mathematics for coding
and analytics including, polynomial
equations, Imaginary number
calculations, Matrix calculations and
Mathematical functions. Through creating
a calculator in command line, which will
integrate students computor V1 as well as
functions for matrix calculus, function
resolution, calculation with complex
numbers, etc.

push_swap
This project involves sorting
algorithms and cattery concept
and handling elements
It involves sorting data on a stack,
with a limited set of instructions,
and the smallest number of
moves. The student will
manipulate various sorting
algorithms and choose the most
appropriate solution(s) for
optimized data sorting.

lem_in
This project moves the student
deeper into algorithms and gets them
acquainted with graph traversal
algorithms: The program developed
will have to intelligently select paths
and precise movements..

corewar
In this project students will learn,
compilation, simplistic virtual machine,
simplistic assembly type language and
visual rendering. It involves creating a
virtual arena, and having
simplistic-language programs fight
each other. The student will get
acquainted with VM conception and
compilation problems of an assembly
language in bytecode.

project_x
Learn more in depth about Genetic
algorithm, Simplex algorithm and
Production Optimization through
designing a program that will read a
file describing processes, analyse the
whole, and propose a worthy solution.

